Unsupervised Image Steganalysis Method Using Self-Learning Ensemble Discriminant Clustering

نویسندگان

  • Bing Cao
  • Guorui Feng
  • Zhaoxia Yin
  • Lingyan Fan
چکیده

Image steganography is a technique of embedding secret message into a digital image to securely send the information. In contrast, steganalysis focuses on detecting the presence of secret messages hidden by steganography. The modern approach in steganalysis is based on supervised learning where the training set must include the steganographic and natural image features. But if a new method of steganography is proposed, and the detector still trained on existing methods will generally lead to the serious detection accuracy drop due to the mismatch between training and detecting steganographic method. In this paper, we just attempt to process unsupervised learning problem and propose a detection model called selflearning ensemble discriminant clustering (SEDC), which aims at taking full advantage of the statistical property of the natural and testing images to estimate the optimal projection vector. This method can adaptively select the most discriminative subspace and then use K-means clustering to generate the ultimate class labels. Experimental results on J-UNIWARD and nsF5 steganographic methods with three feature extraction methods such as CC-JRM, DCTR, GFR show that the proposed scheme can effectively classification better than blind speculation. key words: image steganalysis, statistical property, clustering, unsupervised learning

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Unsupervised Segmentation of Medical Images using DCT Coefficients

Image segmentation is a prerequisite process for image content understanding and visual object recognition in medical images for the development of a computer aided diagnosis(CAD) system. An unsupervised segmentation method is proposed which uses discrete cosine transform(DCT) coefficients for extraction of feature vectors and the Fisher Discriminant K-means (FDK) technique for clustering image...

متن کامل

Unsupervised Steganalysis Based on Artificial Training Sets

In this paper, an unsupervised steganalysis method that combines artificial training sets and supervised classification is proposed. We provide a formal framework for unsupervised classification of stego and cover images in the typical situation of targeted steganalysis (i.e., for a known algorithm and approximate embedding bit rate). We also present a complete set of experiments using 1) eight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 100-D  شماره 

صفحات  -

تاریخ انتشار 2017